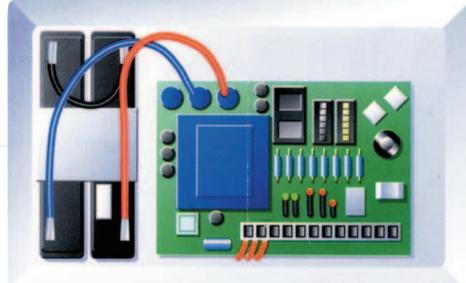


EPD Electronic control units and pneumatic valves/alert stations

Short version

Environmental Product Declaration in accordance with ISO 14025 and EN 15804

Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems


Aumüller Aumatic GmbH

Declaration code M-EPD-SVR-GB-001

Note: This EPD based on the model-EPD Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems

Environmental Product Declaration in accordance with ISO 14025 and EN 15804

Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems

Summary (Part 1 of 2)

Programme operator

Declaration holder

ift Rosenheim GmbH Theodor-Gietl-Strasse 7-9 D - 83026 Rosenheim

LCA prepared by

Life Cycle Engineering Experts
Berliner Allee 58
D - 64295 Darmstadt

aumüller.

Aumüller Aumatic GmbH Gemeindewald 11 86672 Thierhaupten

LCA results Control units per Watt of		Product stage	Construction stage		Use stage			
power		A1 – A3	A4	A5	B1	B2	В3	B4
Primary energy – non-renewable (PE _{n renw}) in MJ		292.32	2.00	-	-	-	-	292.30
Primary energy – renewable (PE _{renw}) in MJ	O B P. Commission	85.98	0.12	-	-	-	-	85.98
Global warming potential (GWP 100) in kg CO2-equiv.		21.43	0.15	-	-	-	-	21.43
Ozone depletion potential (ODP) in kg R11-equiv.	O M. Roumons	2.44E-7	3.05E-12	-	-	-	-	2.44E-7
Acidification potential (AP) in kg SO ₂ -equiv.		0.11	6.02E-4	-	-	-	-	0.11
Eutrophication potential (EP) in kg PO ₄ 3-equiv.		7.06E-3	1.45E-3	-	-	-	-	7.06E-3
Photochemical ozone creation potential (POCP) in kg C₂H₄-equiv.		6.64E-3	-1.99E-3	-	-	-	-	6.64E-3
Abiotic depletion potential (elements) (ADP _{el.}) in kg Sb-equiv.	SiCa	4.20E-5	6.73E-9	-	-	-	-	4.20E-5
Abiotic depletion potential (fossil) (ADP _{fos}) in MJ	3	293.40	2.00	-	-	-	-	293.40
Water consumption in m ³		139.20	0.01	-	-	-	-	139.20

The values expressed as [-] cannot be shown since they are inexistent or marginal. Sections that are not relevant are described in the Annex.

Prof. Ulrich Sieberath
Director of Institute

Prof. Ulrich Sieberath
Dipl.-Ing. (FH) Florian Stich,
Verifier

Environmental Product Declaration in accordance with ISO 14025 and EN 15804

Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems

www.e-fapim.ru

+7 (812) 425-67-41

Summary (Part 1 of 2)

Declaration code	M-EPD-SVR-GB-001
Designation of declared product	Electronic control units, controls and pneumatic valves/alert stations
Scope	Smoke and heat exhaust ventilation systems, or their components, which, through their interaction, exhaust smoke and heat from buildings. Smoke and heat control systems. Ventilation systems for maintaining specific air change rates.

Use stage				Recycling potential			
B5	В6	В7	C1	C2	C3	C4	D
-	1912.00	-		0.23	-4.04	-	-226.40
-	373.20	-	-	0.01	-0.67	-	-65.12
-	136.80	-	-	0.02	-0.33	-	-18.29
-	7.44E-8	-	-	3.56E-13	-2.56E-9	-	-2.53E-7
-	0.23	-	-	7.03E-5	-1.45E-3	-	-0.09
-	0.03	-	-	1.69E-5	-1.43E-4	-	-5.68E-3
-	0.02	-	-	-2.33E-5	-9.67E-5	-	-5.32E-3
-	2.12E-5	-	-	7.86E-10	-3.13E-7	-	3.36E-5
-	1912.00	-	-	0.23	-4.04	-	-226.40
-	280.30	-	-	1.04E-3	-1.34	-	-131.00

The table shows an extract of the environmental impacts. All values required as per EN 15804 are presented in the detailed version

Basis

- EN ISO 14025:2011
- EN 15804:2012

Guidance on preparing Type III Environmental Product Declarations.

This Declaration is based on the PCR document "Building components for smoke and heat control systems" PCR-RW-1.1: 2013

Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue.

The declaration holder assumes full liability for the underlying data, certificates and verifications.

Publication date: 18 December 2013

Date of issue: 19 December 2013

Next revision: 18 December 2018

LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both averaged data collected from two manufacturers and generic data from the "GaBi 6" database. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc.).

Notes on publication The "Conditions and Guidance on the Use of ift Test Documents" apply.

Environmental Product Declaration in accordance with ISO 14025 and EN 15804

Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems

Summary (Part 2 of 2)

www.e-fapim.ru

ФАПИКОМ

+7 (812) 425-67-41

Programme operator

Declaration holder

ift Rosenheim GmbH Theodor-Gietl-Strasse 7-9 D - 83026 Rosenheim

LCA prepared by

Life Cycle Engineering Experts
Berliner Allee 58
D - 64295 Darmstadt

aumüller.

Aumüller Aumatic GmbH Gemeindewald 11 86672 Thierhaupten

LCA results per pneumatic valve/		Product stage	Construc	Construction stage		Use stage				
alert station		A1 – A3	A4	A5	B1	B2	В3	B4		
Primary energy – non-renewable (PE _{n renw}) in MJ		80.89	0.61	-	-	-	-	80.89		
Primary energy – renewable (PE _{renw}) in MJ	Completion	19.91	0.04	-	-	-	-	19.91		
Global warming potential (GWP 100) in kg CO2-equiv.		6.42	0.04	-	-	-	-	6.42		
Ozone depletion potential (ODP) in kg R11-equiv.	C A Proposition of the Control of th	3.02E-7	9.27E-13	-	-	-	-	3.02E-7		
Acidification potential (AP) in kg SO2-equiv.		0.02	1.83E-4	-		-	-	0.02		
Eutrophication potential (EP) in kg PO ₄ ³ -equiv.		1.71E-3	4.40E-5	-	-	-	-	1.71E-3		
Photochemical ozone creation potential (POCP) in kg C₂H₄-equiv.		1.41E-3	-6.06E-5	-	-	-	-	1.41E-3		
Abiotic depletion potential (elements) (ADP _{el.}) in kg Sb-equiv.	SiCa	5.75E-5	2.05E-9	-	-	-	-	5.75E-5		
Abiotic depletion potential (fossil) (ADP _{fos}) in MJ	3	80.97	0.61	-	-	-	-	80.97		
Water consumption in m ³		30.92	2.71E-3	-	-	-	-	30.92		

The values expressed as [-] cannot be shown since they are inexistent or marginal. Sections that are not relevant are described in the Annex.

Mr of Journal	F. Strick
Prof. Ulrich Sieberath Director of Institute	DiplIng. (FH) Florian Stich, Verifier
Director of institute	veriller

Environmental Product Declaration in accordance with ISO 14025 and EN 15804

Electronic control units and pneumatic valves/alert stations for SHEV and ventilation systems

Summary (Part 2 of 2)

www.e-fapim.ru

Declaration code	M-EPD-SVR-GB-001	(812) 425-67-41
Designation of declared product	Electronic control units, controls and pneumatic valves/alert stations	Basis
Scope	Smoke and heat exhaust ventilation systems, or their components, which, through their interaction, exhaust smoke and heat from buildings. Smoke and heat control systems. Ventilation systems for maintaining specific air change rates.	Guidance on p III Environmer Declarations. This Declarations the PCR docucomponents for heat control sy

Use stage				Recycling potential			
B5	В6	В7	C1	C2	C3	C4	D
-	1912.00	-	-	0.07	-	-	-42.91
-	373.2	-	-	4.21E-3	-	-	-12.33
-	136.80	-	-	0.01	-	-	-3.45
-	7.44E-8	-	-	1.08E-13	-	-	-2.95E-7
-	0.23	-	-	2.14E-5	-	-	-0.02
-	0.03	-	-	5.15E-6	-	-	-1.09E-3
-	0.02	-	-	-7.08E-6	-	-	-9.71E-4
-	2.12E-5	-	-	2.39E-10	-	-	-4.83E-5
-	1912.00	-	-	0.07	-	-	-42.88
-	280.30	-	-	3.17E-4	-	-	-24.73

The table shows an extract of the environmental impacts. All values required as per EN 15804 are presented in the detailed version

Basis

- EN ISO 14025:2011
- EN 15804:2012

Guidance on preparing Type III Environmental Product Declarations.

This Declaration is based on the PCR document "Building components for smoke and heat control systems" PCR-RW-1.1: 2013

Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue.

The declaration holder assumes full liability for the underlying data, certificates and verifications.

Publication date: 18 December 2013

Date of issue: 19 December 2013

Next revision: 18 December 2018

LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both averaged data collected from two manufacturers and generic data from the "GaBi 6" database. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc.).

Notes on publication The "Conditions and Guidance on the Use of ift Test Documents" apply.

www.e-fapim.ru

+7 (812) 425-67-41

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim

Telefon: +49 (0) 80 31 / 261-0 Telefax: +49 (0) 80 31 / 261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de